The invisible seafaring industry that keeps the internet afloat
How one crew risked radiation, storms, and currents to save Japan from digital isolation.
www.theverge.com
The internet is carried around the world by hundreds of thousands of miles of slender cables that sit at the bottom of the ocean.
The internet is carried around the world by hundreds of thousands of miles of slender cables that sit at the bottom of the ocean.
These fragile wires are constantly breaking — a precarious system on which everything from banks to governments to TikTok depends.
But thanks to a secretive global network of ships on standby, every broken cable is quickly fixed.
This is the story of the people who repair the world’s most important infrastructure.
The Verge homepageThese fragile wires are constantly breaking — a precarious system on which everything from banks to governments to TikTok depends.
But thanks to a secretive global network of ships on standby, every broken cable is quickly fixed.
This is the story of the people who repair the world’s most important infrastructure.
THE CLOUD UNDER THE SEA
BY JOSH DZIEZABY JOSH DZIEZA Art by Kristen RadtkeArt by Kristen Radtke Photography by Go TakayamaPhotography by Go Takayama
The Verge homepage
Apr 16, 2024, 10:00 AM EDT
OnOn the afternoon of March 11th, 2011, Mitsuyoshi Hirai, the chief engineer of the cable maintenance ship Ocean Link, was sitting in his cabin 20 miles off Japan’s eastern coast, completing the paperwork that comes at the end of every repair. Two weeks earlier, something — you rarely knew what — damaged the 13,000-mile fiber optic cable connecting Kitaibaraki, Japan, and Point Arena, California. Alarms went off; calls were made; and the next day, Hirai was sailing out of the port in Yokohama to fix it.
A camera mounted on the KDDI Ocean Link on March 11th, 2011.
The repair was now nearly done. All that remained was to rebury the cable on the seafloor, which they were doing using a bulldozer-sized remotely operated submersible named Marcas — and, of course, the paperwork.
Suddenly, the ship began to shudder. Hirai got to his feet, found he could barely stand, and staggered out of his cabin, grasping the handrail as he pulled himself up the narrow stairway to the bridge. “Engine trouble?” Hirai asked the captain, who’d already checked and replied that everything seemed normal. The ship continued to tremble. Looking out from the bridge, the sea appeared to be boiling.
A sketch of the Ocean Link in port in Yokohama transitions into a video of the ship. A bird flies overhead and waves lap at its hull.
They turned on the television. An emergency alert showed that an earthquake had struck 130 miles northeast of their location. The shaking finally stopped, and in the silence, Hirai’s mind leapt to what would come next: a tsunami.
Hirai feared these waves more than most people. He had grown up hearing the story of how one afternoon in 1923, his aunt felt the ground shake, swept up her two-year-old brother, and sprinted uphill to the cemetery, narrowly escaping floods and fires that killed over 100,000 people. That child became Hirai’s father, so he owed his existence to his aunt’s quick thinking. Now, he found himself in the same position. He knew tsunamis become dangerous when all the water displaced by the quake reaches shallow water and slows and grows taller. The Ocean Link, floating in less than 500 feet of water, was too shallow for comfort.
Mitsuyoshi Hirai, the former chief engineer of the Ocean Link.Photo by Go Takayama for The VergeIn the family tree of professions, submarine cable work occupies a lonely branch somewhere between heavy construction and neurosurgery. It’s precision engineering on a shifting sea using heavy metal hooks and high-tension lines that, if they snap, can cut a person in half. In Hirai’s three decades with Kokusai Cable Ship Company (KCS), he had learned that every step must be followed, no matter how chaotic the situation. Above all else, he often said, “you must always be cool.”
Across Ocean Link’s 400-foot deck, the ship’s 50 crew members were emerging from their cabins and workstations, trying to figure out what had just occurred. Over the intercom, the captain announced that there had been an earthquake, a tsunami was coming, and the crew should ready the ship to evacuate to deeper water. The crew fanned out to check fuel tanks and lash down machinery. Inside a darkened, monitor-filled shipping container on the starboard deck, the submersible’s pilot steered Marcas back toward the ship as fast as the bulky robot’s propellers could carry it. Minutes later, the submersible was hoisted aboard and the Ocean Link was underway.
The tsunami passed under them imperceptibly on their way out to sea, and when they came to a stop three hours later, the television was showing the first images of destruction. Members of the crew who weren’t working gathered on the bridge to watch the news, which continued to display a tsunami warning, a map of Japan with its eastern seaboard glowing red. They took turns trying to reach loved ones using the ship’s satellite phone, but no calls went through.
As night fell, periodic aftershocks thumped against the hull. Hirai thought about his wife, who was working at a department store in Yokohama near the Ocean Link’s port; his son, a junior in high school at the time; and his parents, whom the family lived with in his hometown of Yokosuka — none of whom he’d been able to reach. Everyone had someone they were worried about.
But Hirai also began to think about the work he knew lay ahead. The Ocean Link was one of a small number of ships that maintain the subsea cables that carry 99 percent of the world’s data. Positioned in strategic locations around the planet, these ships stand ready to sail out and fix faults the moment they are detected, and most of the time, they are more than equal to the task. But earthquakes, Hirai knew from experience, were different. They didn’t just break one cable — they broke many, and badly. If what he feared had happened, Japan risked being cut off from the world in its moment of need.
Sure enough, that night, a call came from headquarters confirming the Ocean Link was safe and directing them to remain at sea until further notice, followed by messages announcing cable failure after cable failure, including the one they had just finished repairing.
Cable industry professionals tend to be pragmatic people, preoccupied with the material realities of working planet-scale construction. But in conversations about landing high-bandwidth cables in digitally neglected regions or putting millions of people back in contact with every fiber strand melted together, they often hint at a sense of larger purpose, an awareness that they are performing a function vital to a world that, if they do their jobs well, will continue to be unaware of their service.
For the Ocean Link crew, this awareness was bound up in a still unfolding national tragedy. They knew that whenever they returned to land, they would have to care for their loved ones quickly, because they would soon be going back out to sea. For how long, no one knew.
TheThe world’s emails, TikToks, classified memos, bank transfers, satellite surveillance, and FaceTime calls travel on cables that are about as thin as a garden hose. There are about 800,000 miles of these skinny tubes crisscrossing the Earth’s oceans, representing nearly 600 different systems, according to the industry tracking organization TeleGeography. The cables are buried near shore, but for the vast majority of their length, they just sit amid the gray ooze and alien creatures of the ocean floor, the hair-thin strands of glass at their center glowing with lasers encoding the world’s data.
If, hypothetically, all these cables were to simultaneously break, modern civilization would cease to function. The financial system would immediately freeze. Currency trading would stop; stock exchanges would close. Banks and governments would be unable to move funds between countries because the Swift and US interbank systems both rely on submarine cables to settle over $10 trillion in transactions each day. In large swaths of the world, people would discover their credit cards no longer worked and ATMs would dispense no cash. As US Federal Reserve staff director Steve Malphrus said at a 2009 cable security conference, “When communications networks go down, the financial services sector does not grind to a halt. It snaps to a halt.”
A map of the world showing the dozens of fibre optic cable systems which stretch across the oceans, connecting continents and island chains. Some of these cables are extremely long. The map animates to show the cables laid down between 1989 and the present, with planned cables up to 2027 also displayed.
ACTIVE AND PLANNED FIBER OPTIC CABLE SYSTEMSCredit: TeleGeography