Dusty Bake Activate
Fukk your corny debates
https://www.sciencenews.org/article/microscopic-menagerie?src=longreads
What is a wasp?” might seem like an overly simple question for a Ph.D. biologist to be asking. “What is a human?” Even more so.
But these are strange times in the life sciences. Seth Bordenstein of Vanderbilt University in Nashville now embraces the notion that each wasp he studies, each squirrel darting around campus — not to mention himself, every reader of science magazines and every other representative of see-it-without-a-microscope life on Earth — is really a blend of one big organism and a lot of little ones.
In recent years, research has shown that what people commonly think of as “their” bodies contain roughly 10 microbial cells for each genetically human one. The microbial mass in and on a person may amount to just a few pounds, but in terms of genetic diversity these fellow travelers overwhelm their hosts, with 400 genes for every human one. And a decent share of the metabolites sluicing through human veins originates from some microbe. By these measures, humanity is microbial.
But numbers are just the beginning.
[img alt="" class="caption caption-processed" src="https://www.sciencenews.org/sites/default/files/images/microbes_flygut.jpg" title=" Tsetse flies must be infected during gestation with a particular bacterium in order to develop a normal gut lining (top). Lab-raised larvae that were bacteria-free developed faulty guts (bottom) and weak immune systems that made them much more vulnerable to infection by the parasite that causes sleeping sickness.">
GUT BUSTER Tsetse flies must be infected during gestation with a particular bacterium in order to develop a normal gut lining (top). Lab-raised larvae that were bacteria-free developed faulty guts (bottom) and weak immune systems that made them much more vulnerable to infection by the parasite that causes sleeping sickness.
Weiss et al/PLOS Pathogens 2013
The evolutionary impact of animals’ microbial denizens can be substantial. Adult wasps of the genus Nasonia are only about 30 percent microbial, Bordenstein estimates. But those microbes keep two species apart that could otherwise interbreed.
Some researchers think of these microbes as just another part of a plant or animal’s environment, like a mountain range that keeps two related species separate. But, with a squint and a slap to the worldview, researchers like Bordenstein are exploring whether a body’s microbes are so intimate that they’re part of the organism itself. Or, if you prefer, the metaorganism.
“Ecosystem” is the word that 26 scientists used in a call for new thinking about animal-bacteria interactions that was published in February by the Proceedings of the National Academy of Sciences. The recent accumulation of knowledge about bacteria vis à vis their animal hosts “is fundamentally altering our understanding of animal biology,” the group declared.
Why would biologists get so excited about teeming microorganisms now? Even someone who missed the earliest fiddling with magnifying lenses has had 330 years to catch up on volume 14 of the Royal Society’s Philosophical Transactions, wherein merchant microscopist Antonie van Leeuwenhoek reported “to my great surprise,” that watered-down scrapings from his teeth revealed “very many small living Animals, which moved themselves very extravagantly.”
For more than three centuries after van Leeuwenhoek’s discovery, anyone interested in studying the microbial world was limited by the frustrations of “growing fuzzy things in Petri dishes,” as Corrie Moreau of the Field Museum in Chicago puts it. A fascinating microorganism might thrive in the gills of deep-ocean clams, in groundwater seeping through porous rock or in the gonads of mosquitoes. But if you couldn’t culture it in a lab dish you had no way of knowing about it. Even with clever technical advances, an estimated 99 percent of microbial life can’t be cultured, Moreau says. And what does grow may be misleading. A marginal freak may look like the dominant member of a community only because it’s the one that flourishes in the lab.
Recent genomic innovations have changed all that. In the last few years, automated systems have been developed to quickly and affordably determine the genetic signatures of thousands of individual microbes in a sample.
What a world the new technology reveals: In just 19 samples from four colonies of turtle ants, Moreau says, 445 kinds of bacteria showed up that cultures and clunkier genetic techniques had missed. Eight kinds of bacteria consistently show up in the guts of honeybees and a few other bees, but so far, nowhere else. Bedbugs need Wolbachia bacteria inside their cells to survive.
And bacteria may at last explain how the giant panda, a bamboo-eating member of the mammalian order Carnivora without a grass-grazer’s capacious fermenting gut or specialist digestive enzymes, can live on 12.5 kilograms of highly fibrous plant material a day. The bear’s puzzling digestive system turns out to gurgle with bacteria that apparently belong to groups that include competent digesters of cellulose.
Bacteria start shaping their hosts’ lives right from the beginning. In tsetse flies, for example, inheriting genes from mom isn’t enough; larvae that don’t also inherit the right kind of bacteria don’t grow properly.
The way tsetse flies start their lives “is eerily similar to what happens in mammals,” says Brian L. Weiss of Yale University. In most insects, “the female will just lay a bunch of eggs and fly away.” Tsetse females, however, gestate one fertilized egg at a time inside what amounts to a uterus. Glands inside the uterus produce a white milklike liquid rich in fats and proteins. After suckling for its first three larval stages, the youngster weighs about as much as its mother. Then she gives birth.
Gorging on mother’s milk doses the infant with a Wigglesworthia bacterium, which Weiss describes as looking like a hot dog. Wigglesworthia can live only inside a tsetse fly, and flies deprived of it don’t give birth.
Weiss was able to deduce what Wigglesworthia does in development by dosing moms with B vitamins to artificially keep their bacteria-free larvae alive. The larvae grew up but never formed a decent immune system. Flies deprived of bacteria as larvae also failed to form a real gut lining, Weiss and his colleagues reported in April in PLOS Pathogens.
A faulty gut lining in a tsetse fly is a serious problem, and not just for the flies. Even though they’re famous for spreading the trypanosome parasite that causes sleeping sickness, only 1 to 5 percent of normal tsetse flies become carriers when feeding on infected blood. With faulty guts, though, more than 50 percent of bacterially starved, skimpy-gut flies turn into carriers.
Other studies have turned up similar examples of microbial power in animal development. Females of the parasitic wasp Asobara tabida need a Wolbachia bacterial strain in order to form wasp eggs. Developing mice can’t form normal capillaries in their guts without a standard set of microbes being present. And young lab mice may even need their gut bacteria for proper brain development, a research team in Sweden reported in 2011. Mice raised without normal gut microbes were unusually active and bold in tests, as if their brains weren’t wired the same way as those of regular shadow-loving, skittish mice. Returning gut bacteria to germfree mice re-created normal caution in their offspring. But it failed in adults with brains that were already mature.
Moms of a variety of species appear to microbially prep their young, says Bordenstein. Vesicomyid clams that need microbial help to survive at deep-sea vents, some sponges and cockroaches release eggs already loaded with bacteria. When stinkbugs lay eggs, the capsules get smeared with mom’s bacteria-rich excrement. When the youngsters hatch, they gobble the egg case, smear and all.
Reports of mother-to-child bacterial transmission appear to be so widespread among animals, Bordenstein argues, that it’s time to consider them the norm. He and Vanderbilt colleague Lisa Funkhouser published a manifesto in August in PLOS Biology calling for an end to “the sterile-womb paradigm.”